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Abstract. We study the relativistic two-centre problem for Dirac particles. A set of 
coordinates is introduced which allows a convenient description of the two asymptotic 
cases of very large and very small two-centre distances. Calculations become more 
practicable by means of the implantation of the local representation discussed in the 
preceding paper. The boundary conditions as well as symmetries of the wavefunctions 
are investigated in detail and a numerical procedure for the solution of the Dirac equation 
in Cassini coordinates is presented. 

1. Introduction 

The motion of an electron in the presence of two charged nuclei has been studied 
since the earliest days of quantum mechanics. In 1927 Heitler and London were able 
to explain the covalent binding for diatomic molecules. The first exact non-relativistic 
calculations were performed by Hylleraas (1931) and Teller (1930) using elliptical 
coordinates. While the Schrodinger equation with a potential generated by two 
point-like nuclei still separates in these coordinates, the Dirac equation remains a 
partial differential equation in two dimensions (Muller et a1 1973, Muller and Greiner 
1976). Therefore relativistic and spin effects can be examined only with very enlarged 
numerical expense. Today the valence bond is investigated mostly by non-relativistic 
approximations with atomic orbitals (LCAO MO) in a variational concept (McWeeny 
and Pickup 1968). Because of the low binding energies this leads to rather reliable 
results. 

In the last years the two-centre problem has gained enhanced interest, because it 
supplies an opportunity to test QED in strong external electromagnetic fields (Reinhardt 
and Greiner 1977). Such fields can be realised in collisions of very heavy ions. Here 
a relativistic description of the electron motion is mandatory. A first step of the 
solution of this dynamical problem may be the discussion of the stationary two-centre 
Dirac equation with the two-centre distance 2a as an independent parameter. In this 
context accurate calculations become more and more necessary, so that precise 
theoretical predictions of various processes are possible. Up to now, the problem has 
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been treated by an ansatz with spherical solutions of the united system (Rafelski and 
Muller 1976). This approximation works with sufficient accuracy only for small 
distances between the nuclear charges, as do the atomic orbitals for large a. To 
describe the electron in both the intermediate region and the asymptotic regions, the 
first step has to be the introduction of well suited cooidinates. This means that one 
set of coordinate planes becomes spherical in both asymptotic cases. The singularities 
of the coordinates have to coincide with the position of the two centres. Such a system 
is obtained if one defines one coordinate by the potential of two point charges in 
two-dimensional electrodynamics. In the literature (Moon and Spencer 1961) they 
are known as Cassini coordinates. 

Because electrostatics in the plane can be treated within the framework of the 
theory of analytical functions, the coordinate transformation is ‘induced’ by a confor- 
mal mapping. This is an important condition for the application of a transformation 
method described in the preceding paper. The complexity of these new variables 
shows up in the scaling factors, which appear unavoidably in the wave equation. In 
the case of the Dirac equation more trouble arises with additional space-dependent 
terms. These are avoided if we use the transformation method mentioned. Thereby 
the Dirac equation gains lucidity and practical calculations are simplified greatly. 

In § 2 we will introduce these new coordinates and transform the Dirac equation. 
The result will be a Hamiltonian which embodies a partial differential operator. In 
8 3 we will derive the boundary conditions that the wavefunction has to fulfil. 
Moreover, we discuss symmetry properties of the Hamiltonian. This supplies the 
prerequisites for a numerical solution. In § 4 we will give a brief description of the 
computational scheme employed. 

2. Dirac equation in Cassini coordinates 

In this section we want to repeat the essential steps of the transformation of the Dirac 
equation to its local representation in the special case of Cassini coordinates. We will 
use the method presented in the preceding paper (Schluter et a1 1983, to be referred 
to as I). We will take over the notation of this paper. It may be advantageous if we 
derive the relations leading to the Dirac equation in some detail. Considering the 
intricate coordinates used, the result will be rather simple. 

We start with the definition of these coordinates, called Cassini coordinates w and 
S. Here the lines with constant w are Cassinian ovals (figure 1). These curves were 
first used by Giovanni Domenico Cassini (1625-1712) to describe the planetary motion 
around the sun (Cassini 1740). Today they are more important in the context of 
two-dimensional electrodynamics, where they are the equipotential lines for two equal 
point charges. 

The Cassini coordinates can be expressed easily by a holomorphic function f of 
the complex variable 

5 = z  +ip (2.1) 

with the cylindrical coordinates z and p (figure 2), 
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Figure 1. Cassinian ovals in the p ,  z plane. The line with w = 1 is the lemniscate. 
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Figure 2. Explanation of the geometrical quantities r l ,  r2 .  
Cassini coordinates by w = (r1r2)1’2/a and 8 =;(e, + e 2 ) .  

and e2,  which define the 

with 

r :  = p 2 + ( z  +a)’,  

r 2 = p  + ( z - u ) ,  

e l  = tan-’[p/(z +a) ] ,  

e2 = tan-’[p/(z - a ) ] .  2 2  2 (2.3) 

The number 2a denotes the two-centre distance. The new coordinates will be defined 
by the real and imaginary part off, 

(2.4) 

Hence the Cassinian ovals are the curves where the product r l r 2  is constant. A 
holomorphic function is angle preserving and so we get a new set of orthogonal 
coordinates with the real and imaginary part (Behnke and Sommer 1976). The 
important scaling factor reads 

( 2 . 5 )  

w = eRef = (rlr2)’’2/a,  s = Imf = $(el +e2).  

hlogw = hs = h = Jdc/df I = w ‘ a / Y E ,  
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with the discriminant 

D = w4+2w2 cos 2s  + 1. (2.6) 

As a consequence of the coordinate transformation the volume element will be 
modified, 

(2.7) d.r = p  dp dz dq = (w3a2/JD)p  dw d8 dq. 

p(w, S )  = ( a / J i ) ( JD-  1 - w 2  cos 2 ~ ) ” ~  

For the following calculations we need the expression 

(2.8) 

far the distance from the symmetry axis. 
Studying the relativistic electron problem, we take as the starting point the time- 

dependent Dirac equation, written in cylindrical coordinates, in the local representation 
(I, (3.9)). This formulation of the Dirac equation was described as an illustrative 
example in I. Later on we want to consider merely the stationary problem for the 
symmetric two-centre potential induced by point-like nuclei without retardation, 

O I l a  a [ ( ap p acp az 
-i ( y  - + y  - - + y  - - c y  + m  sZ=O 

The bound states have to be normalised according to 

(2.9) 

(2.10) 

For the next steps it is necessary to know precisely in which manner the Dirac equation 
has to be transformed to its new local representation, if a holomorphic function induces 
the change of coordinates. This is explained in $ §  2 and 4 of I. 

Now we carry out the transformation in the (p, z )  plane. After the introduction 
of the new system we get in analogy to (I, (2.16)) the matrices 

3 ~ ‘ = - s i n a y 3 + c o s a y  1 , y3=cosa  y +s ina  yl ,  
72 = $, y o =  

(2.11) 

with, remembering (I, (4.10)), 

sgn(cos S ) ,  
( J O +  1 + w 2  cos ~ s ) ” * ( J D - -  1) 

J2w2tD cos a = 

(40-  1 - w 2  cos 2s)”*(JD+ 1) 

J Z W  2 t D  sin (Y = 

(2.12) 

The unitary space-dependent matrix (I, (4.16)) which will rotate (2.11) back to the 
constant old representation yw, reads 

s2(a) = exp(- & a ~ ~ )  = cos (+CY) - i sin (+a )x2. (2.13) 

Now the condition for the vanishing of y w T F  has to be fulfilled. We have to find the 
solution of (I, (4.23)), the first-order differential equations 

l a a  l a  1 a a 
p +- - - = o  ---P--------- 

i a  
h aiogw h as 2 ’ h as h aiogw 2-O. 
-~ (2.14) 
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In 8 4 of I the relation of this system to the Cauchy-Riemann differential equations 
for the function log(dJ/df) is explained. By means of (I, (4.29)) we can write down 
the solution p immediately, 

p = - - 1  2 logld</dfl= - 5 logh. 

We summarise the whole transformation in the equation 

(2.15) 

(2.16) 

with S3(cp) = exp(-&cpZ3). lclc embodies the wavefunction in the ordinary Cartesian 
representation. The resulting Dirac equation in the local representation retains only 
the complicated scaling factors and the potential, now formulated in Cassini coordin- 
ates, is 

(2.17) 

Figure 3 shows some equipotential lines. In spite of the complicated angle dependence 
via the discriminant D the potential fluctuates very little if 6 varies in the range (0, T ) .  

Even in the worst case (WJ = 1) it deviates from the mean value by only *17.2%. For 
w < 0.25 and w > 4 this deviation becomes less than *1.5%. We recall that the Cassini 
curves ( w  = constant) are just the equipotential lines in two-dimensional electrostatics, 
which apparently do not differ very much from those in the three-dimensional case. 

V t c ( w ,  8 )  = -Za(J2/aw2)(JD+ 1 +w2j1? 

The bound states have to be normalised with the following integral: 

(2.18) 

The Hamiltonian used in further examination now reads, remembering (2.8) and (2.17), 

A = -i- a3-+a1-- l a  -) -iaz- i a  -+ Vtc+my 0 , :E( :w as P aSo 
(2.19) 

the ugly terms cos a and sin (T of (2.12) do not appear. In this rather brief derivation 
we were able to obtain the Hamiltonian even for such complicated coordinates. We 
think that this is the most appropriate way to study the two-centre Dirac equation. 

3. Symmetries and boundary conditions 

The symmetric two-centre problem obviously has two geometrical symmetric:, the 
parity and the cylindrical symmetry. We can get the corresponding operators P and 
j ,  in our local representation using the unitary transformation matrices S 2 ( a  j ,  S 3 ( q ) ,  
cf (2.161, and the known standard operators (Rose 1961) 

in (I, (2.21)j. The factor eB is invariant under the space inversion f, and rotations 
around the z axis as can easily be seen. 

Alternatively we can see in analogy to the spherical case (I, § 5 )  that -i a l a 9  in 
the Hamiltonian (2.19) is the commuting hermitian operator .f,. The solutions naturally 
have to obey the boundary conditions (I, (3.15)) of the cylindrical case. The eigenvalues 
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00 60” 120 
6 

Figure 3. Equipotential lines for the Coulomb potential generated by two-point nuclei, 
each with charge number 2 ;  the potential is given by V = -ZaZk/a.  

and functions are now well known from the cylindrical and the spherical problem (I, 

(3.2) 
80  3,519 

Furthermore, especially for the consideration of the parity, we will replace j, by its 
eigenvalue, the magnetic quantum number p, to get rid of the cp dependence in the 
Dirac equation. 

It is more difficult to find the transformed parity operator $ without the help of 
(I,  (2.21)). Obviously all coefficients in (2.19) do not change the sign under space 
inversion because the angle coordinate appears as cos 28 only. But the angle derivative 
8/88 becomes negative. So we have to find a 4 x 4  matrix which commutes with all 
matrices appearing in the Hamiltonian (2.19) with the exception of a l ;  here it must 
anticommute. Moreover P has to satisfy 

1 3  jc$(w, 8 )  eiFm = p $ ( w ,  8 )  eiFw, p = *$, *I,. . * . 

PZ= 1,  P’ = P. (3.3) 
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One finds easily that *iyoZ1 fulfils these conditions and it will replace y o  in (3.1). 
The undetermined sign should be fixed consistent with the standard formulation. The 
result is 

(3 -4) B = *iyoZlfs(S + 7r - S ,  rp + rp * 7r) 

&*(w,  6, c p )  = *$*(w, 6, c p ) .  

with the eigenvalue equation 

(3.5) 

In (3.4) the upper or lower sign is to be taken throughout. It has to be chosen in 
such a way that cp does not leave the interval (0,27r). This is necessary for the 
uniqueness of S3(cp). This problem is discussed in more detail in (I, § 3). 

The remarkable fact that we get the same parity behaviour as in the spherical case 
is a consequence of the similar form of the Dirac equation. Also there the space 
inversion has no effect on the scaling factors and only the corresponding angle 
derivative changes its sign. 

There exists no analogue to Dirac's I? operator in spherical coordinates. This 
means more precisely that there is no operator of the form 

N M  

n = O  m = O  
6 = C 1 B,,(r)(a/aS)"(a/acp)", N a l ,  (3.6) 

which commutes with A. The simple proof is given in appendix 1, 

two-dimensional partial differential operator, 
For the further examinations it is advantageous to reduce the Hamiltonian to a 

(3.7) 

At this point we mention that a representation, where a1 and a 3  are purely imaginary 
while a 2  is real, will obviously be ideal for analytical and numerical purposes. In the 
spherical case we have already introduced such matrices cf (I, (5.25)). With a skilfully 
chosen representation the type of the partial differential equation can also be deter- 
mined easily. We multiply the eigenvalue equation (3.7) from the left with ia3 and 
take a set of a-matrices for which the product a3a1 is diagonal. The purely imaginary 
diagonal elements (i, -4, i, 4) mean that our partial differential equation is of elliptical 
type (Courant and Hilbert 1968). 

Now we will proceed to the boundary conditions. It will turn out that the wavefunc- 
tion has to vanish at the boundaries of the domain of integration (figure 3). This is 
also valid along the cut-(0 < w < 1, S = 7r/2) and is mainly a result of the factor eB 
which contains a term J p  for all coordinate systems with cylindrical symmetry. These 
results are a consequence of the asymptotic behaviour of the wavefunction near the 
boundaries which will be investigated subsequently. This knowledge greatly facilitates 
the numerical calculations. 

Firstly we will consider the Hamiltonian for small and for large w. Therefore it 
is convenient to evaluate the space de endent coefficients in our partial differential 

of orthogonal Gegenbauer polynomials (ErdClyi et a1 1953). We examine this term 
and the other coefficients of interest in appendix 2. Here we need only the lowest 
order terms of the expansions. 

equation. Fortunately the expression F D is the generating function for a special class 
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In both limiting cases the potential becomes independent of the angle 8, cf figure 3. 
Inserting these expansions in (3.7) for the case w +O, the Dirac equation in Cassini 
coordinates reads, omitting the residual terms, 

With the substitutions r = aw2/2 and 8 = 28 or 8 = 28 - 7 ~  for the two centres of 
charge number 2 respectively, the spherical Dirac equation for the hydrogen problem 
in its local representation is obtained. This is illustrated in figure 4(a) .  Here some 
circles around one of the two centres as well as some radii are drawn. For decreasing 
distances ( r  + 0) these circles coincide better and better with the coordinate lines 
w =constant. Simultaneously the radii for which the polar angle 8 is fixed become 
identical with the S-lines. Moreover, these &curves are equally spaced (8 = 26). 

For large values of w we do the same, 

@ -- +yom +=E* ( w  +CO).  (3.10) 
wa as wa s ins  2zff aw ) 

l a ,  i a  
-iag- --la1- -+az ( a a w  

With the substitutions r = a w  and 8 = S we get again the spherical Dirac equation for 
a Coulomb potential, now with the charge number 22 .  We refer to figure 4(b). Here 
the same, mutatis mutandis, as in the opposite asymptotic case (figure 4(a) )  holds true. 

So, as a first simple consequence of the considerations of these two cases, we can 
adopt the general asymptotic behaviour of the spherical wavefunctions. It is pleasing 
that the Cassini coordinates in the asymptotic regions are related to the spherical 
coordinates in such a simple way. 

For exceedingly large or small two-centre distances the main contribution of the 
wavefunction lies totally in one of the asymptotic regions. This means that it may be 
described very well by spherical states. 

Our next problem will be the asymptotic behaviour of the solutions near the 
remaining boundaries, that is for small angles 8,  6 + 7~ and along the cut. For small 
and large w this can be deduced easily from the previous results. In both cases we 
get essentially the same power behaviour of the angle variable and we expect that 
the wavefunctions vanish in the intermediate region in the same way as they do in 
the spherical case. For small S we make the following power ansatz: 

* =$sa. (3.11) 

We are interested in the lowest order only, and so we can restrict ourselves to two 
terms in the Hamiltonian (3.71, the angle derivative and the singular coefficient 
l/P(W, 61, 

[-ia1(YE/aw2)a/as + a 2 p / p ] 4  = 0. (3.12) 
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I 
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6 

Figure 4. Coordinate lines for spherical coordinates r ,  6 in the w ,  6 plane. In ( a )  the 
origin is one of the two centres, in (6)  it is the point in the middle between the two centres. 
The more-or-less horizontal lines correspond to circles. The radius in units of a is given 
by the numbers. 

We have to expand the expressions 40 and l /p(w,  S )  for small S to get the power 
behaviour near the boundary, 

SE= (w2+1)1/2+o(Sz) ,  u / p  = (w2+l)1’2/(wzS)+O(S).  (3.13) 

Equation (3.12) now becomes, omitting the residual terms, 

( w 2 +  1)”*/(aw2)[-iala/ati + ( p / ~ ) a ~ ] 4  = 0. (3.14) 

The first result is the requested independence of w of our power ansatz. 
The magnetic quantum number has the main influence. If different representations 

of the Clifford algebra are considered, we observe that the chosen matrices a1 and 
a2 play an important role for the asymptotics of the different spinor components. 
Using the representation defined in (I, (5 .25 ) )  a purely real differential equation (3.14) 
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results, which reduces to 

(a  +p)$1= 0,  (a -p )$2=0 ,  (a  + p ) $ 3 = 0 9  

So it results that 

K-H Wietschorke, P Schluter and W Greiner 

f f  =IpI. 
Besides this we have 

$1 = $3 = 0 

G2 = $4 = 0 

for p > O  

for p < 0. 

(a  -p)$4 = 0. ((3.15) 

(3.16) 

(3.17) 

The alternative possibility, a = -Ip 1, leads to non-normalisable solutions. With the 
help of the parity (3.4) we can transfer these results to the region near S = T ,  

6 d W ,  TI = &w, 01, (3.18) 

and analogously for the remaining components. The different signs correspond to 
positive and negative parity. A similar investigation can be done for the case S + 7712 
and 0 < w < 1. The resulting simple boundary conditions will be useful for a numerical 
treatment of the Dirac equation. 

&w, TI = * J l ( W ,  01, 

4. The numerical treatment of the Dirac equation in Cassini coordinates 

It seems to be impossible even in these coordinates to get an analytical solution of 
the Dirac equation in the case of two point-like charges. Therefore we have to solve 
this partial differential equation in two dimensions numerically. The procedure pro- 
posed will be a semi-discrete Galerkin method which belongs to the class of variational 
methods. It reduces the problem to a system of ordinary differential equations. 

First of all we will look at the domain of integration for our differential equation 
(figure 3). For w < 1 the cut at S = a12 divides it into two separate parts corresponding 
to the neighbourhoods of the distinct nuclei. As a consequence of defining the 
coordinate w dimensionless (lemniscate H’ = 1) it follows that for different two-centre 
distances 2a a bound state with definite quantum numbers has its main contribution 
in different intervals of w. Especially for large a the spatial expectation value of the 
wavefunction is far down in one of the strips for w < 1; for very small a it is far 
outside the lemniscate. We have mentioned earlier that in these asymptotic regions 
an approximation by means of the corresponding spherical states would be very 
accurate. The knowledge of these functions will be used later for the construction of 
angular basis functions. The lemniscate is the natural borderline for the validity of 
the ‘atomic’ and ‘molecular’ basis. 

Treating the symmetrical problem we recognise by parity arguments that we can 
restrict our calculations to the half plane ( ~ / 2 ,  T ) .  The starting point is the following 
approximate ansatz for the wavefunction, we begin with w < 1 

with a certain magnetic quantum number p. The bispinors &(w) are the 5xpansion 
coefficients, which are to be calculated for the given 4 x 4 basis matrices U;’’). The 
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index i is closely related to the equally spaced tracks 

Si  = [ ~ / ( 2 m  + 2)li + 7r/2, i = 1 , 2  , . . . ,  m.  (4.2) 

The reason for these relationships and the nature of the coefficients $,(w) will become 
clear later. 

because the wavefunction vanishes 
there. So we replace the infinite-dimensional solution space S(’) of 8- dependent 
spinor functions by a finite-dimensional subspace, or more precisely by a sequence 
of finite-dimensional subspaces Sk) with the running index m denoting the dimension. 
In general fi!*) is a diagonal 4 x 4 matrix containing the so-called roof functions u i ( S )  
as elements. They are frequently used in finite element methods which are related 
to our numerical proceedings (Strang and Fix 1973). 

These continuous functions u i ( S )  are zero unless S E ( S i - l ,  Si+l)  where they have to 
fulfil the conditions 

We can dispense with the tracks So and 

Two linear independent functions have to be taken in the definition of a set of roof 
functions. We use the pair sinix sin’lx and cos& sin’lx for the approximating 
function 

f‘*’(x) = (a cos fx  + b sin I x )  sin* x, x = 2 s  - 7 r ,  (4.4) 

between the grid points. The numbers U and b are real parameters, determined 
according to the conditions (4.3) for the intervals (&I, Si), (Si,  & + I )  and every index 
i. Considering the spin-angular distribution of the spherical 1s-eigenstate (I, § 5 ) ,  we 
recognise that it can be described exactly by the basic functions (4.4) for x = 8. So 
they are well suited in the case of large two-centre distances. The functions (4.4) can 
fulfil the boundary condition of the angle interval in two different ways (a  = O  or 
a # 0). Here we have to remember the results in § 3. As a consequence we are forced 
to choose the appropriate roof functions in the diagonal of fil’l) (6) for the edge grid 
points of the angle interval. 

Until now we have presumed a vanishing wavefunction on both sides of the angle 
interval ( ~ / 2 ,  T), as it is required for w C 1. For w > 1 we will continue with the 
‘molecular’ part of our approximation. The main characteristic is the loss of the 
boundary condition for S = ~ / 2 .  The parity condition will be some compensation on 
this side of our half plane. The approximating functions have to be modified to 
describe angle distributions according to the analytically known spherical solutions in 
the asymptotic regions for large w. So we propose that the functions 

F”‘)(S) = (a  cos $5 + b sin $8)  sin’l S (4.5) 
replace the f”(S). 

The matrix fi? will differ from the diagonal form for w > 1 in order to satisfy the 
parity relations. This effect becomes visible only on the new left edge grid point 
(SO = ~ / 2 ) ,  where the wavefunction may become non-zero now. Therefore we have 
to extend our expansion (4.1) in this region by one additional term. We relinquish a 
further discussion of more technical details of our ansatz and only summarise the 
basic idea in one sentence. By means of the known spherical asymptotics of our 
solution we can construct a suitable basis, divided in two main parts, so that its 
expansion coefficients embody the approximate wavefunction on the grid points. 
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Our basic mathematical procedure to reduce the two-dimensional partial differen- 
tial equation to an ordinary linear system of first order is the method of Galerkin- 
Bubnow, cf Strang and Fix (1973). Using this procedure, we look for a weak solution 
$:’ of the differential equation. Generally this is an element of some solution space 
$‘”I  such that 

( X ,  (&‘”’-E)@) = 0 (4.6) 

for every function x E p‘&), the test space. The scalar product has been defined in 
(2.18) in the context of the normalisation of bound states of the Dirac equation. We 
want to use this variational method for the angular coordinate only in order to get a 
system of ordinary differential equations. To implement this idea we take the angle- 
dependent part of this scalar product and define 

(4.7) 

In the case of the semi-discrete Galerkin-Bubnow method we choose for p(”) the 
space S!,!’. Moreover, we require that the angular dependence of the weak solution 
$:“’ can be described by the same functions. The result is a linear system of first 
order differential equations, 

( w  A d/dw + [E% + CL G -ZaW+ m a D ) P g ’ ( w )  = E~ffqk’( w )  (4.8) 
with 

A,, = ( O ~ ’ ’ I - i a 3 t O I O ~ ~ ’ ) ,  B,, =( f i :” ’~ - ia~ t~a /as lOi”’ ) ,  
GI ,  = w2(fijj”i \ a 2 / p I o y ) ,  

D,, = w 2 ( f i j ~ ) J y 0 J 0 j l * ’ ) ,  

w,, = JZ(f i)” ’ \(JE+ 1 + w 2 ) 1 ’ 2 1 f i y ) ,  

F,, = W * ( f i j r ’ ( p ) .  

(4.9) 

Here we observe that the listed matrix elements are again 4 x 4 matrices. P k ) ( w )  
contains all the expansion coefficients $ , ( w )  of ( L k ) ( w ,  a) ,  cf (4.1). We want to point 
out the independence of the matrices A and B of the variable w .  This simplifies 
considerably the numerical treatment of the system (4.8) by any multistep integration 
method, which is used frequently for such calculations. 

A decomposition of, for instance, A in the direct product as 

A,, = ( u , I ~ ~ I u , ) o  (-ia1) (4.10) 

(U,, U, are the pure roof functions) fails because of the different behaviour of the 
spinor components at the boundaries. Nevertheless the matrices contain some sym- 
metries, which lead to numerical advantages. The approximating function f‘”’(8), 
and therefore the roof functions u , (S )  too, as well as the weighting functions in (4.9), 
e.g. l /p(w, S), have invariance properties under space inversion, where we have to 
distinguish between the atomic and molecular regions. But we do not want to discuss 
the technical consequences in detail. The matrices A through W have band character 
caused by the roof functions. The elements can be calculated using a Gauss integration 
of low order. For the two matrices A and B it is even possible to obtain analytical 
values, a further advantage of these matrices. 

After this brief description of the integration method of the partial differential 
equation, we now turn to the problem of finding eigenvalues and eigenfunctions. For 
this purpose we want to transfer an effective method for eigenvalue problems of 
ordinary differential equations which is known as the matching method. It is a member 
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of the family of the multiple shooting methods (Stoer and Bulirsch 1973, Keller 1968). 
In the case of radial relativistic wavefunctions the energy expectation value is the 
starting point for the set-up of a well convergent procedure, as proposed by Mayers 
(1957). Starting with a regular asymptotic solution at the left side (r + 0) we get a 
'left solution'. Analogously we calculate a 'right solution'. 

If the starting value is not an eigenvalue the left solution diverges on the right side 
and vice versa. At a matching point, normally the classical turning point, the mismatch- 
ing can be employed to yield a correction €or the starting energy. 

For the more complex problem of a partial differential equation we have to reconcile 
the ordinary matching method with the requirement that the wavefunction is con- 
tinuous on a matching line (e.g. w = wc).  

In figure 5 we have introduced two starting lines, wo and wm, for the left and right 
solutions ILr(w,S) and ~ R ( w , S ) ,  which obey (4.8). Generally we do not know the 
correct spin-angle distributions to start our integrations in w o  and wm. But they must 
exist for a certain eigenvalue E,  so that we can connect the solutions CllR and ljlL along 
w c  in such a way that the combined wavefunction becomes continuous and differenti- 
able everywhere. Our procedure is divided into two steps, starting with an energy 
EO. Firstly we determine the two spin-angle distributions by minimising the following 
mismatch function: 

A* = / l 1 ( I ~ - 1 ( I ~ I I I l l C l l L L + C l l ~ l l l w = w , .  (4.11) 

Figure 5. Schematic illustration of the matching method. A 'left (right) regular' solution 
is generated by integration from wg to w ,  ( w ,  to M'~). The distribution of only one spinor 
component is shown. The energy correction follows from the discontinuity at w = w,. 

The norm is defined according to the earlier used scalar product (4.7) 

lI*1l2 =(*I*). (4.12) 

With these preparations we will look for the zeros of 

(4.13) 

4 is the combined left and right solution with the minimised defect A*, The w 
derivative in the Hamiltonian yields, operating on the discontinuous wavefunction 4, 
the energy correction term AE. So the next iteration step can be started with E l  = 
Eo + AE(Eo),  assuming that the expectation value represents a better approximation 
of the eigenvalue. 
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We hope that this short overview will suffice. A more complete description will 
be presented together with numerical results in a subsequent paper. 

Up to now we can offer calculations of bound states with the magnetic quantum 
number CL =; in the potential of two point-like symmetric nuclei. In particular, we 
investigated the lead-lead svstem in detail. The half two-centre distances a have to 
be taken for the present out of the interval (104fm, 102’fm), because we have 
established first of all our ‘atomic’ basis. This is sufficient to give information about 
the accuracy and velocity of convergence of our procedure. The lower limit at a 
= lo4 fm, depending on the state under consideration, becomes necessary, because 
for decreasing two-centre distances an increasing part of the electron density is localised 
outside the lemniscate, which cannot be described by our ansatz. For instance, the 
ground state of the symmetric lead system can be calculated with a relative accuracy 
of better than ten decimal places in the binding energy. For a distance of a = lo4 fm 
we notice a slight deviation from the energy value calculated by diagonalising the 
Hamiltonian in the usual atomic basis, which we use as reference to compare with 
our data. The reason lies in the above-mentioned fact that a small part of the 1 X  
wavefunction is unreachable. 

In these calculations the discontinuity of the wavefunctions on the matching line 
can be reduced to lo-’’ expressed by the mismatch A$ of (4.11). Higher states such 
as 2Z and 3C are also calculated with similar accuracies paying attention to the 
temporary borderline. 

Clearly these results are of little physical interest. They prove, however, that the 
mathematical framework furnished in the preceding sections works and yields reliable 
results. 

5. Conclusion 

In this work we propose a new way to tackle the relativistic two-centre problem. It 
comprises two basic ideas. Firstly the chosen Cassini coordinates ensure in both 
asymptotic cases of physical interest a simple description of the electron motion based 
on the well known spherical behaviour. The coordinate transformation can be derived 
from an analytical function, which facilitates the application of the second idea. This 
is the implantation of our local representation, explained in detail in paper I. 

The introduction of these two constituents into the Dirac equation with the 
two-centre potential has been carried out in 9 2. A discussion of the geometrical 
symmetries in 9 3 reduces the derived Hamiltonian to a partial differential operator 
in two dimensions. We restricted our work to the charge symmetric case which enables 
the utilisation of the parity conservation. The easily derived boundary condition, that 
the wavefunction has to vanish everywhere along the curve enclosing the domain of 
integration, is not sufficient to implement any numerical procedure. So more intensive 
investigations of the behaviour of regular, normalisable solutions near the boundaries 
became necessary, as described briefly in 9 3. Notable results were the emergence of 
the spherical Dirac equation in the two asymptotic cases ( w  very small or very large) 
and the invariant power behaviour of the wavefunction for all w at the boundaries 
of the angular variable S. 

This was a legitimation and stimulation to introduce the special numerical method 
described in 84. Paying attention to the natural borderline in the domain, the 
lemniscate, we have to establish two angle-dependent roof function bases, the ‘atomic’ 
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and the ‘molecular’ ones. Then the coordinate 6 can be eliminated by a variational 
method, the Galerkin-Bubnow method. The derived differential equation of first 
order can be treated with commonly used methods like multistep procedures. 
Eigenenergies and eigenfunctions are found with a fast converging algorithm. It 
combines a matching step for two solutions with a certain starting energy, each regular 
in one of the two asymptotic regions, and a step for the determination of a new, 
corrected eigenvalue on the base of the energy expectation value. 

After this brief repetition of the contents we want to discuss some important 
aspects for possible generalisations of the symmetric two-centre problem. We assumed 
preliminarily that the potential is generated by point-like nuclei. This permits the 
comparison in the asymptotic regions with analytically known values for energy and 
wavefunctions. The transition to extended nuclei, which are physically more realistic, 
can be achieved in analogy to the spherical case. There mostly the potential of 
uniformly charged spheres is taken to approximate this effect. It can be expressed by 
the Cassini coordinates. A slight deviation from homogeneously charged spherical 
nuclei leads to considerable simplifications in the analytical structure of the potential. 
In particular, we have to choose Cassinian ovals as nuclear surface, where the potential 
must be differentiable. 

Another step of generalisation is the inclusion of charge asymmetry (2, f Z2) .  
While in the symmetric case the conservation of parity can be used to reduce the 
numerical expense by half, we have to integrate in the full domain now. We point 
out that it may be advantageous to introduce modified Cassini coordinates defined 
by the holomorphic function 

instead of (2.2). Here the w-lines correspond to two-dimensional equipotential lines 
for two-point charges with values Q1 and Q2 respectively. For Q1 = 0 these coordinates 
are identical with the spherical coordinates. Q1 and Q2 need not be chosen as 21 
and Z 2 .  It may be better to adjust them so that the critical point of the coordinate 
system (double point of the ‘lemniscate’) coincides with the saddle point of the 
three-dimensional potential as in the symmetric case. However, we have to mention 
that probably the inverse of f(l)-and consequently the scale factors and the poten- 
tial-cannot be found analytically. 

The Cassini coordinates can be generalised in one more direction. It is straightfor- 
ward to introduce more than two collinearly arranged centres. 

To investigate many-electron problems we need the relation between the electron 
densities and the generated screening potential. So it is important whether the Poisson 
equation in these complicated coordinates can be solved easily, similarly to the 
spherical case. This would be the prerequisite to perform Dirac-Fock calculations. 

Our method of solving the Dirac equation in Cassini coordinates may also be an 
application in a totally different field. Recently the description of hadrons by the MIT 
bag model has gained increased attention. To allow for excited states or fission of 
hadrons, calculations with deformed bags have been performed. Here eigenenergies 
ana eigensolutions of the Dirac equation are sought which are subject to the linear 
MIT boundary condition at the surface of the bag. A class of surfaces is given (e.g. 
expressed by Legendre polynomials up to a certain order) and the ‘solutions’ (quotation 
marks because they exist only for the eigenenergies) are found by superposition of 
spherical states (Vasak et a1 1983). The problem is to obtain the eigenenergies. We 
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propose another method. If one considers bag shapes which correspond to Cassini 
curves w = constant, one has a rectangular domain of integration. These shapes should 
be very appropriate for describing fission processes. Then by outward integration a 
set of solutions can be found which generally will not fulfil the boundary condition. 
However, the methods developed for our problem, the two-centre problem, to find 
‘optimal’ linear combinations and energy corrections can be transferred. This should 
be a rather fast convergent algorithm of finding solutions in a deformed bag. 

This is a small selection of possible extensions which can universalise our method 
to a flexible program for the description of relativistic two-centre problems of spin-half 
particles. Numerical results like energy correlation diagrams will be published in a 
subsequent paper. 
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Appendix 1. Proof of a theorem 

The proposition stated in Pi 3 is a special case of a more general theorem. 
Let us assume that the Dirac Hamiltonian has the form 

(Al . l )  

This is just the local representation in the coordinates ( U ,  U, w).  In $ 3  we have the 
special case U = w, U =S, w =cp. Besides this, we assume that the scale factor h,  
depends on U (&h, # 0) but is independent of w (&h, = 0). Then every differential 
operator 

N M  

8 = 1 1 Bnm(u, U, w)d:dr 
n = O  m=O 

(A1.2) 

with space-dependent 4 x 4 matrices B,, which commutes with I? actually has the form 
M 

8 = 1 Bo,(u, U, w)d:. 
m = O  

(A1.3) 

Hence no derivative with respect to U occurs. 
The following lemma will be useful: 

[ah BI = 0,  [al ,  81 = Bal 3 B=O (A1.4) 

To prove this we multiply the second condition from the left and from the right 

B - C Y ~ B C Y ~  = B, ~ I I ~ c Y I  -8 = B, (A1.5) 

with any matrices B, B’. 

respectively with a 1,  

where we made use of the first condition. The proposition follows by addition 
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To prove the theorem we look at the commutator 

(A1.6) [H,B]=- i  al-auBnmaCaE+i B n m a ~ a ~ a l - a , + R  

where R does not contain any U derivative. We sort according to powers of t3taxaE. 
Since this commutator vanishes, in particular the terms in front of auard; and a u d r - ' a E  
must vanish ( N  > 0), 

1 1  1 1 
n,m hu n. m hu 

( 1 l h u ) a  1 B N m  - (1 lhu ) B N m a  1 = 0, (A1.7) 

(1 lhu )a IBN- 1,m - (1 lhu )BN-l ,ma 1 -N(au (1 lhu)BNma I = 0.  

These conditions lead to 

[ a ~ , B ~ m l = o ,  [air B ~ - l , m l  =Nhu(au(l/hu))BNmal- (A1.8) 

Now we can apply the lemma, 

B" = 0. (A1.9) 

The proof is completed by induction. Clearly the result does not depend on the local 
representation. It holds true also in the ordinary Cartesian representation. 

Apppendix 2. Asymptotic expressions for some terms 

In this appendix we will derive Laurent expansions around w = 0 and w = 00 for some 
terms in the Dirac equation in Cassini coordinates. In the asymptotic regions they 
are more convenient than the closed expressions for numerical as well as analytical 
investigation. The second and fourth roots of 

D = 1 + 2 cos 28 w + w (A2.1) 

are very easy to expand. They are just the generating functions for a special class of 
Gegenbauer polynomials (ErdClyi et a1 19531, 

n =o 
Iw < 1) 

The inverses of these functions give 

(A2.2) 

(A2.3) 

n = O  

The series for w > 1 can be obtained easily from the expansion around w = 0 by use 
of the symmetry relation 

D ( l / w )  = ( l / w 4 ) D ( w ) .  (A2.4) 
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The Gegenbauer polynomials can be calculated from the recurrence formula 

(n  +l)C:+l ( ~ ) = 2 ( n  + A ) x C t ( x ) - ( n  +2A -l)Ct-l ( x )  (A2.5) 

and the starting values 

c; ( x )  = 1, C: ( x )  = 2Ax.  (A2.6) 

In the case A = -1 we observe a remarkable behaviour. The polynomials C,’/2 with 
order n larger than 1 always contain the factor (1 - x 2 )  = (1 -cos2 28) = sin’ 28. 

The potential energy (2.17) then becomes 

It obeys the interesting symmetry relation 

(l/W)VtC(l/W) = W2VtC(W). 

(A2.7) 

(A2.8) 

The distance p from the symmetry axis is 
1/2  

(u/&)w2( f c,:i2 (-cos 26)WZ”) for w < 1 
n = O  

(A2.9) 
for w > 1. 

p = [  W 

(a/Ji ,w (1-cos2S)(1-w2)+ C,1’2(-cOS28)W-2n ( n = 2  

Here we have to take care of a common factor Isin 281 for w < 1 or sin S for w > 1. 
The Laurent expansions of Vt, and l / p  around w = 0 and w = 00 can be obtained 
directly. 
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